lundi 23 avril 2018

NASA's NEOWISE Asteroid-Hunter Spacecraft -- Four Years of Data








NASA - NEOWISE Mission logo.

April 23, 2018


Animation above: This movie shows the progression of NASA's Near-Earth Object Wide-field Survey Explorer (NEOWISE) investigation for the mission's first four years following its restart in December 2013. Green dots represent near-Earth objects. Gray dots represent all other asteroids which are mainly in the main asteroid belt between Mars and Jupiter. Yellow squares represent comets. Animation Credits: NASA/JPL-Caltech/PSI.

NASA's Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE) mission has released its fourth year of survey data. Since the mission was restarted in December 2013, after a period of hibernation, the asteroid- and comet-hunter has completely scanned the skies nearly eight times and has observed and characterized 29,375 objects in four years of operations. This total includes 788 near-Earth objects and 136 comets since the mission restart.

Near-Earth objects (NEOs) are comets and asteroids that have been nudged by the gravitational attraction of the planets in our solar system into orbits that allow them to enter Earth's neighborhood. Ten of the objects discovered by NEOWISE in the past year have been classified as potentially hazardous asteroids (PHAs). Near-Earth objects are classified as PHAs, based on their size and how closely they can approach Earth's orbit.

"NEOWISE continues to expand our catalog and knowledge of these elusive and important objects,” said Amy Mainzer, NEOWISE principal investigator from NASA's Jet Propulsion Laboratory in Pasadena, California. “In total, NEOWISE has now characterized sizes and reflectivities of over 1,300 near-Earth objects since the spacecraft was launched, offering an invaluable resource for understanding the physical properties of this population, and studying what they are made of and where they have come from.”

The NEOWISE team has released an animation depicting detections made by the telescope over its four years of surveying the solar system.

More than 2.5 million infrared images of the sky were collected in the fourth year of operations by NEOWISE. These data are combined with the year one through three NEOWISE data into a single publicly available archive. That archive contains approximately 10.3 million sets of images and a database of more than 76 billion source detections extracted from those images.

Near-Earth Object Wide-field Infrared Survey Explorer (NEOWISE). Image Credit: NASA

Originally called the Wide-field Infrared Survey Explorer (WISE), the spacecraft launched in December 2009. It was placed in hibernation in 2011 after its primary astrophysics mission was completed. In September 2013, it was reactivated, renamed NEOWISE and assigned a new mission: to assist NASA's efforts to identify and characterize the population of near-Earth objects. NEOWISE also is characterizing more distant populations of asteroids and comets to provide information about their sizes and compositions.

NASA's Jet Propulsion Laboratory in Pasadena, California, manages and operates the NEOWISE mission for NASA's Planetary Defense Coordination Office within the Science Mission Directorate in Washington. The Space Dynamics Laboratory in Logan, Utah, built the science instrument. Ball Aerospace & Technologies Corp. of Boulder, Colorado, built the spacecraft. Science data processing takes place at the Infrared Processing and Analysis Center at Caltech in Pasadena. Caltech manages JPL for NASA.

To review the latest data release from NEOWISE, please visit: http://wise2.ipac.caltech.edu/docs/release/neowise/

For more information about NEOWISE, visit:

https://www.nasa.gov/neowise

http://neowise.ipac.caltech.edu/

More information about asteroids and near-Earth objects is at: https://www.jpl.nasa.gov/asteroidwatch

To learn more about NASA’s efforts for Planetary Defense see: https://www.nasa.gov/planetarydefense/overview

Animation (mentioned), Image (mentioned), Text, Credits: NASA/JoAnna Wendel/Jon Nelson/JPL/DC Agle.

Greetings, Orbiter.ch

Jupiter’s Great Red Spot, Spotted












NASA - JUNO Mission patch.

April 23, 2018


This image of Jupiter’s iconic Great Red Spot and surrounding turbulent zones was captured by NASA’s Juno spacecraft.

The color-enhanced image is a combination of three separate images taken on April 1 between 3:09 a.m. PDT (6:09 a.m. EDT) and 3:24 a.m. PDT (6:24 a.m. EDT), as Juno performed its 12th close flyby of Jupiter. At the time the images were taken, the spacecraft was 15,379 miles (24,749 kilometers) to 30,633 miles (49,299 kilometers) from the tops of the clouds of the planet at a southern latitude spanning 43.2 to 62.1 degrees.

Juno spacecraft orbiting Jupiter

Citizen scientists Gerald Eichstädt and Seán Doran processed this image using data from the JunoCam imager.

JunoCam's raw images are available for the public to peruse and process into image products at: http://www.missionjuno.swri.edu/junocam

More information about Juno is at: https://www.nasa.gov/juno and http://missionjuno.swri.edu

Image, Animation, Text, Credits: NASA/Tony Greicius/JPL-Caltech/SwRI/MSSS/Gerald Eichstädt/Seán Doran.

Greetings, Orbiter.ch

vendredi 20 avril 2018

New Research Activated as Biological Samples Packed for Earth Return Aboard Dragon











ISS - Expedition 55 Mission patch.

April 20, 2018

The outside of the International Space Station is a harsh environment but scientists are taking advantage of the extreme conditions to conduct advanced space research. Astronauts are also researching what happens to a variety of organisms living for months at a time inside a spacecraft as NASA prepares for longer missions farther out into space.


Image above: NASA astronaut Scott Tingle tends to plants grown inside the VEGGIE facility in support of space botany research. Image Credit: NASA.

The fifth and final external materials experiment (MISSE) delivered by the latest SpaceX Dragon resupply ship was activated outside the orbital lab today. Robotics engineers operating the Canadarm2 and Dextre extracted and installed the MISSE canisters one by one from Dragon’s trunk to areas on the station. The canisters were then remotely opened exposing a variety of materials to the vacuum of space to help engineers design safer and stronger spacecraft systems.

Back inside the orbital lab, Flight Engineer Scott Tingle of NASA harvested and photographed plants for the APEX-06 study today. The botanical samples collected from the VEGGIE facility were later processed and stowed in a science freezer for return to Earth inside the Dragon cargo craft. They will be analyzed after being quickly shipped to scientists at NASA and the University of Wisconsin.

NASA Flight Engineers Ricky Arnold and Drew Feustel once again partnered up and collected their blood and urine samples today for more biomedical experiments. Researchers are analyzing the samples as they continuously study how the human body adapts to extended periods of weightlessness. Results will help doctors provide therapies to maintain the health of astronauts in space and humans on Earth.


Image above: "The Enchanted Islands of #Ecuador – the Galápagos," were photographed by NASA astronaut Ricky Arnold, currently aboard the International Space Station with the Expedition 55 crew. This view from more than 200 miles above our Earth shows the cloud-covered Galápagos Islands and sunglint in the waters off the coast of Ecuador on April 13, 2018, as the station orbited above the Pacific Ocean. Image Credit: NASA/Ricky Arnold.

Mice are also being observed on the space station so scientists can detect the chemical signals that lead to weakened bones and muscles. Japanese astronaut Norishige Kanai drew more blood samples from the rodents today and wrapped up a week-long run of the Mouse Stress Defense experiment. The blood samples will be processed in a centrifuge, stowed in biological science freezer then returned to Earth inside Dragon for analysis on Earth.

Related links:

MISSE: https://www.nasa.gov/centers/armstrong/features/SpaceX_Dragon_Brings_Material_Samples_to_ISS.html

APEX-06: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=7524

VEGGIE facility: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=374

SpaceX Dragon: https://www.nasa.gov/spacex

Expedition 55: https://www.nasa.gov/mission_pages/station/expeditions/expedition55/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia/Yvette Smith.

Best regards, Orbiter.ch

New Technology Doubles Scientists’ View of Ocean-Air Interactions












NASA - Armstrong Flight Research Center patch.

April 20, 2018


Image above: NASA's Beechcraft B-200 Super King Air is shown on the ramp at the Armstrong Flight Research Center. The twin-turboprop aircraft, used for research and mission support functions, recently was fitted with wingtip winglets that improve aerodynamic efficiency and reduce fuel burn. Image Credits: NASA Photo/Carla Thomas.

NASA scientists are hard at work trying to unlock mysteries of our planet’s ocean surface currents and winds using a new Earth science radar instrument called DopplerScatt.

Ocean currents and winds form a never-ending feedback loop: winds blow over the ocean's surface, creating currents. At the same time, the hot or cold water in these currents influences the wind's speed. Understanding the relationship between the two phenomena is crucial to understanding Earth's changing climate. Gathering data on this interaction can also help people track oil spills, plan shipping routes and understand ocean productivity in relation to fisheries.


Image above: Engineers Raquel Rodriguez Monje and Fabien Nicaise discuss placement of the DopplerScatt radar instrument on the NASA B200 before its final installation onto the aircraft’s fuselage. Image Credits: NASA Photo/Ken Ulbrich.

NASA has been studying winds for decades using NASA's NSCAT, QuickScat and RapidScat instruments. However, DopplerScatt, developed by NASA's Jet Propulsion Laboratory in Pasadena, California, provides a new capability to measure both winds and currents simultaneously.

Flying aboard a B200 King Air aircraft, DopplerScatt is a spinning radar that "pings" the ocean's surface, allowing it to take measurements from multiple directions at once. It's a step up from previous technology, which could simultaneously measure currents from one or two directions at the most, and couldn't measure properties of the sea surface as completely as this new instrument.


Image above: Radar operator Alexander Winteer monitors incoming wind data from the DopplerScatt radar instrument during a science flight off the California Coast on March 5, 2018. Image Credits: NASA Photo/Carla Thomas.

Like a highway patrol person's speed gun, the DopplerScatt instrument calculates the Doppler effect of a radar signal bouncing off an object. As that object moves closer or farther away, it detects these changes and figures out its speed and trajectory. Those measurements are combined with data from a scatterometer, which detects the reflection of the radar signal from the ocean's surface. The more "scattering" the radar observes, the rougher the waves. From the roughness and orientation of the waves, wind speed and direction can be calculated.

DopplerScatt is funded and managed by the Earth Science Technology Office at NASA Headquarters in Washington D.C. The B200 King Air research aircraft used to fly the instrument is managed and operated from NASA’s Armstrong Flight Research Center located in Edwards, California.

Related links:

NSCAT: https://www.jpl.nasa.gov/missions/nasa-scatterometer-nscat/

QuickScat: https://winds.jpl.nasa.gov/missions/quikscat/

RapidScat: https://www.nasa.gov/rapidscat/

B200 King Air aircraft: https://www.nasa.gov/centers/armstrong/news/FactSheets/FS-099-DFRC.html

NASA's Jet Propulsion Laboratory: https://www.jpl.nasa.gov/

Earth Science Technology Office: https://esto.nasa.gov/

NASA’s Armstrong Flight Research Center: https://www.nasa.gov/centers/armstrong/home/index.html

Images (mentioned), Text, Credits: NASA Armstrong Flight Research Center/Kate Squires/Monroe Conner.

Greetings, Orbiter.ch

jeudi 19 avril 2018

CERN’s SPS experiments restart












CERN - European Organization for Nuclear Research logo.

19 Apr 2018


Image above: The Super Proton Synchrotron (SPS), CERN’s second-largest accelerator. (Image: Julien Ordan/CERN).

At CERN, springtime usually marks the restart of the lab’s experiments. But while most eyes turn towards the restart of the Large Hadron Collider (LHC) and its experiments, the research programme at the Super Proton Synchrotron (SPS), CERN’s second-largest accelerator, has also resumed. This month witnesses the restart of data taking for a range of experiments fed with particle beams from the SPS. These experiments are an essential arm of CERN’s experimental programme, addressing areas as varied as precision tests of the Standard Model and studies of the quark–gluon state of matter, believed to have existed shortly after the Big Bang.

On 9 April, data taking restarted at three SPS experiments: NA58/COMPASS,  NA62, and NA63. NA58 directs several types of particle onto a variety of fixed targets to look at the ways in which elementary particles called quarks and gluons combine to make up protons, neutrons and other hadrons. This year the experiment is shooting quark­–antiquark pairs called pions at a proton target to collect the world’s largest data set on a hadron–hadron collision process called Drell–Yan mechanism, in order to make a fundamental test of the theory of the strong interaction between quarks and gluons.

NA62, another fixed-target experiment, aims to precisely test the Standard Model by looking for the super-rare decay of a positively charged particle known as a kaon into a positively charged pion and a neutrino–antineutrino pair. Earlier this year, the NA62 team reported the first candidate event for this decay, and the team aims to run the experiment for a record number of 218 days this year. If the Standard Model prediction for the number of events is correct, NA62 should see about 20 events with the data collected before the end of this year.

NA63 fires beams of electrons or antielectrons at a variety of fixed targets, among them large diamonds, to study radiation processes in strong electromagnetic fields like those seen in astrophysical objects such as highly magnetized neutron stars. On the cards for this year is a measurement of the so-called radiation reaction — the effect of the electromagnetic field emitted by an accelerated charged particle on the particle’s motion. Details of this effect are under debate, even though the effect has been known for over a hundred years.

The NA61/SHINE SPS experiment is set to restart data taking on 25 April. NA61 studies the production of hadrons using collisions between several types of hadron or nucleus and an assortment of nuclear targets. In store for this year are, among others, measurements of heavy hadrons with charm-type quarks produced in collisions between lead nuclei, and measurements of fragmentation of light nuclei. The first of these measurements are relevant for studying the quark–gluon state of matter, and the second are needed to understand the propagation of cosmic rays in the Milky Way.


Image above: Inside NA61, one of several experiments fed with particle beams from the SPS. (Image: Julien Ordan/CERN).

These are not the only experiments benefiting from particle beams from the SPS. NA64 and AWAKE are both set to start taking data in the coming months. With such a rich diversity of experiments linked to the SPS, the accelerator is so much more than a link in the accelerator chain taking protons to the LHC.

Note:

CERN, the European Organization for Nuclear Research, is one of the world’s largest and most respected centres for scientific research. Its business is fundamental physics, finding out what the Universe is made of and how it works. At CERN, the world’s largest and most complex scientific instruments are used to study the basic constituents of matter — the fundamental particles. By studying what happens when these particles collide, physicists learn about the laws of Nature.

The instruments used at CERN are particle accelerators and detectors. Accelerators boost beams of particles to high energies before they are made to collide with each other or with stationary targets. Detectors observe and record the results of these collisions.

Founded in 1954, the CERN Laboratory sits astride the Franco–Swiss border near Geneva. It was one of Europe’s first joint ventures and now has 22 Member States.

Related article:

First LHC test collisions of 2018
http://orbiterchspacenews.blogspot.ch/2018/04/first-lhc-test-collisions-of-2018.html

Related links:

Large Hadron Collider (LHC): https://home.cern/topics/large-hadron-collider

Super Proton Synchrotron (SPS): https://home.cern/about/accelerators/super-proton-synchrotron

Standard Model: https://home.cern/about/physics/standard-model

NA58/COMPASS: https://home.cern/about/experiments/compass

NA63: https://home.cern/about/experiments/na63

NA61/SHINE: https://home.cern/about/experiments/na61shine

AWAKE: https://home.cern/about/experiments/awake

For more information about European Organization for Nuclear Research (CERN), Visit: https://home.cern/

Images (mentioned), Text, Credits: CERN/Ana Lopes.

Greetings, Orbiter.ch

Station Biomedical and Exercise Studies Impact Health on Earth and in Space











ISS - Expedition 55 Mission patch.

April 19, 2018

Biomedical research to improve health on Earth and in space dominated today’s science activities aboard the International Space Station. The Expedition 55 crew is helping scientists from around the world understand how life shaped by gravity adapts to living in outer space.


Image above: Doha, the capital city of Qatar, was photographed as the space station orbited over the northeastern coast of the Arabian Peninsula. Image Credit: NASA.

NASA astronauts Ricky Arnold and Drew Feustel joined forces today collecting and stowing their blood samples in a science freezer for a pair of human research studies. The samples will be analyzed later to detect the chemical responses and physiological changes that take place in the human body during a spaceflight mission.

Blood samples were also drawn from mice as Japanese astronaut Norishige Kanai continued his week-long research activities for the Mouse Stress Defense experiment. Those samples will be processed in centrifuge, stowed in a freezer then analyzed to detect the processes that lead to muscle and bone loss in microgravity. Astronauts could benefit from the results and stay healthier on longer missions farther into space.


Image above: Flying over North Pacific Ocean, seen by EarthCam on ISS, speed: 27'622 Km/h, altitude: 403,11 Km, image captured by Roland Berga (on Earth in Switzerland) from International Space Station (ISS) using ISS-HD Live application with EarthCam's from ISS on April 19, 2018 at 19:40 UTC.

Exercise is a very important contributor to maintaining stronger bones and muscles in space. However, exercise devices are bulky and can impact spacecraft habitability. Arnold tested a newer, smaller device today called the Miniature Exercise Device-2 that provides a range of motion and resistance workouts while maximizing habitable spacecraft volume.

Related links:

Chemical responses: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=980

Physiological changes: https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=954

Miniature Exercise Device-2: https://www.nasa.gov/mission_pages/station/research/experiments/862.html

Expedition 55: https://www.nasa.gov/mission_pages/station/expeditions/expedition55/index.html

Space Station Research and Technology: https://www.nasa.gov/mission_pages/station/research/index.html

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Images (mentioned), Text, Credits: NASA/Mark Garcia/Orbiter.ch Aerospace/Roland Berga.

Best regards, Orbiter.ch

NASA Takes First 3-D Microscopic Image on the Space Station












ISS - International Space Station logo.

April 19, 2018

Standard flat imagery of space science is a thing of the past for researchers at NASA’s Glenn Research Center and Procter & Gamble Co. (P&G).  Using the International Space Station’s newly upgraded microscope, the Light Microscopy Module (LMM), scientists can now see microscopic particles in 3-dimensional images.

On April 12, researchers first viewed the particles, called colloids, in 3-D, during the ongoing Advanced Colloids Experiments (ACE). Colloids are suspensions of microscopic particles in a liquid, and they are found in products ranging from milk to fabric softener. Consumer products often use colloidal gels to distribute specialized ingredients, for instance droplets that soften fabrics, but the gels must serve two opposite purposes: they have to disperse the active ingredient so it can work, yet maintain an even distribution so the product does not spoil.

NASA Takes First 3-D Microscopic Image on the Space Station

Video above: A composite 3-D model of NASA's Advanced Colloids Experiment. Video Credits: P&G, NASA and the Center for the Advancement of Science in Space.

Researchers are using the Advanced Colloids Experiment-Temperature-6 (ACE-T-6) investigation, which has been in development for eight years, to study the behavior of colloids in gels and creams. The team plans to use the results to improve product shelf life and provide for more efficient product packaging.

ACE-T-6 has used a variety of imaging techniques with hardware developed by Glenn and ZIN Technologies, Inc. Now because of last year’s confocal upgrade to the LMM, researchers are able to view micron-sized particles in consecutive 2-D layers, or slices, and combine them into 3-D models that can be viewed from any angle. These models greatly increase the ability for scientific observations of how colloidal systems evolve.

Advanced Colloids Experiment-Temperature-6 (ACE-T-6) on ISS. Image Credit: NASA

In a microgravity environment, particles in these systems settle 100,000 times slower than on Earth, allowing observation during days or weeks instead of just minutes, revealing previously hidden thermo-dynamic interactions.

ACE will continue using this imaging technology through 2019. Researchers will study particle shapes, coatings, chemistry and manipulation with magnetic fields by observing these now visible particle interactions.

P&G has partnered with NASA in research and innovation for more than 10 years to investigate the mechanisms of consumer product shelf life. Researchers can apply knowledge gained from the Advanced Colloids Experiments to improving the stabilizers within gels and creams found within consumer products, which in turn could ultimately improve shelf-life. As a result, the research may lead to commercial enhancements like improved battery performance and solar cells, and better consumer products such as shampoo and pharmaceuticals.

Related links:

NASA’s Glenn Research Center: http://www.nasa.gov/glenn

Light Microscopy Module (LMM): https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Facility.html?#id=531

Advanced Colloids Experiments (ACE): https://www1.grc.nasa.gov/space/iss-research/iss-fcf/fir/lmm/ace/

Advanced Colloids Experiment-Temperature-6 (ACE-T-6): https://www.nasa.gov/mission_pages/station/research/experiments/explorer/Investigation.html?#id=1707

Confocal upgrade to the LMM: https://www.nasa.gov/feature/from-2d-to-3d-space-station-microscope-gets-an-upgrade

International Space Station (ISS): https://www.nasa.gov/mission_pages/station/main/index.html

Image (mentioned), Video (mentioned), Text, Credits: NASA/Ronald Coulter/NASA Glenn Research Center/Debbie Lockhart.

Best regards, Orbiter.ch